Product # | Size | Price |
---|---|---|
12636S | 100 µl | N/A |
REACTIVITY | H |
SENSITIVITY | Endogenous |
MW (kDa) | 86 |
SOURCE | Rabbit |
Product Information
Application | Dilution |
---|---|
Western Blotting | 1:1000 |
Immunoprecipitation | 1:50 |
Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.
For western blots, incubate membrane with diluted primary antibody in 5% w/v BSA, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight.
NOTE: Please refer to primary antibody datasheet or product webpage for recommended antibody dilution.
From sample preparation to detection, the reagents you need for your Western Blot are now in one convenient kit: #12957 Western Blotting Application Solutions Kit
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.
Load 20 µl onto SDS-PAGE gel (10 cm x 10 cm).
NOTE: Loading of prestained molecular weight markers (#13953, 5 µl/lane) to verify electrotransfer and biotinylated protein ladder (#7727, 10 µl/lane) to determine molecular weights are recommended.
NOTE: Volumes are for 10 cm x 10 cm (100 cm2) of membrane; for different sized membranes, adjust volumes accordingly.
* Avoid repeated exposure to skin.
posted June 2005
revised November 2013
Reprobing of an existing membrane is a convenient means to immunoblot for multiple proteins independently when only a limited amount of sample is available. It should be noted that for the best possible results a fresh blot is always recommended. Reprobing can be a valuable method but with each reprobing of a blot there is potential for increased background signal. Additionally, it is recommended that you verify the removal of the first antibody complex prior to reprobing so that signal attributed to binding of the new antibody is not leftover signal from the first immunoblotting experiment. This can be done by re-exposing the blot to ECL reagents and making sure there is no signal prior to adding the next primary antibody.
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalently purified water.
posted June 2005
revised October 2016
Protocol Id: 10
This protocol is intended for immunoprecipitation of native proteins for analysis by western immunoblot or kinase activity utilizing Protein A magnetic separation.
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.
10X Cell Lysis Buffer: (#9803) To prepare 10 ml of 1X cell lysis buffer, add 1 ml cell lysis buffer to 9 ml dH2O, mix.
NOTE: Add 1 mM PMSF (#8553) immediately prior to use.
A cell lysate pre-clearing step is highly recommended to reduce non-specific protein binding to the Protein A Magnetic beads. Pre-clear enough lysate for test samples and isotype controls.
IMPORTANT: Pre-wash #73778 magnetic beads just prior to use:
Carefully remove the buffer once the solution is clear. Add 500 μl of 1X cell lysis buffer to the magnetic bead pellet, briefly vortex to wash the beads. Place tube back in magnetic separation rack. Remove buffer once solution is clear. Repeat washing step once more.
IMPORTANT: The optimal lysate concentration will depend on the expression level of the protein of interest. A starting concentration between 250 μg/ml-1.0 mg/ml is recommended.
IMPORTANT: Appropriate isotype controls are highly recommended in order to show specific binding in your primary antibody immunoprecipitation. Use Normal Rabbit IgG #2729 for rabbit polyclonal primary antibodies, Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 for rabbit monoclonal primary antibodies, and Mouse (G3A1) mAb IgG1 Isotype Control #5415 for mouse monoclonal primary antibodies. Isotype controls should be concentration matched and run alongside the primary antibody samples
Proceed to one of the following specific set of steps.
NOTE: To minimize masking caused by denatured IgG heavy chains (~50 kDa), we recommend using Mouse Anti-Rabbit IgG (Light-Chain Specific) (D4W3E) mAb (#45262) or Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127). To minimize masking caused by denatured IgG light chains (~25 kDa), we recommend using Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127).
posted December 2008
revised April 2018
Protocol Id: 410
RIP4 Antibody recognizes endogenous levels of total RIP4 protein.
Species Reactivity:Human
Species predicted to react based on 100% sequence homology:Monkey
Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human RIP4 protein. Antibodies are purified by protein A and peptide affinity chromatography.
The receptor-interacting protein (RIP) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that trigger pro-survival and inflammatory responses through the activation of NF-κB, as well as pro-apoptotic pathways (1). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and recruitment to TNF-R1 through interaction with TRADD (2,3). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (4,5). RIP also interacts with TNF-receptor-associated factors (TRAFs) and can recruit IKKs to the TNF-R1 signaling complex via interaction with NEMO, leading to IκB phosphorylation and degradation (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (2,3). Caspase-8-dependent cleavage of the RIP death domain can trigger the apoptotic activity of RIP (8).
Receptor-interacting serine-threonine kinase 4 (RIP4, ANKRD3, DIK, PKK, or RIPK4) is a membrane-associated, ankyrin repeat-containing member of the RIP family first identified in HaCat cells (9,10). RIP4 has been shown to be involved in keratinocyte differentiation in vivo as well as wound repair (11-13). Studies indicate that siRNA knockdown of RIP4 in human xenografted tumor cells suppresses Wnt-dependent growth while over-expression of RIP4 in vitro stabilized β-catenin and lead to an increase in Wnt-dependent gene expression (14).
Explore pathways + proteins related to this product.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.